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An integrated autopilot and guidance algorithm is developed, using the sliding mode
control approach, for a missile with forward and aft control surfaces. Based on guidance
considerations, the zero effort miss (ZEM), encountered in differential games guidance
solutions, is used as one of the sliding variables in the proposed control scheme. The dual
control configuration provides an additional degree of freedom in the integrated design.
This degree of freedom is exploited by introducing a second sliding surface, selected based
on autopilot design considerations. Restraining the system to the ZEM surface guarantees
zero miss distance, while remaining on the second surface provides a damped response.
The performance of the integrated dual controller is evaluated using a two-dimensional
nonlinear simulation of the missile lateral dynamics and relative kinematics, assuming first
order dynamics for the target evasive maneuvers. The simulation results validate the design
approach of using ZEM and the flight-control based sliding surfaces to attain high accuracy
interceptions.

Nomenclature

a acceleration
A,B, C, G state space model matrices
f(·)(·) missile nonlinear aerodynamics function
f , g vector functions
H matrix used to determine the SMC control signal
I moment of inertia
L Lyapunov function candidate
L lift force
L(·) lift force derivative
M SMC uncertainty controller parameter matrix
M pitch moment
M(·) pitch moment derivative
m mass
q pitch rate
r range
t, tgo time, time-to-go
Um saturation limit
V speed
X −M − Z body reference frames
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X −O − Z inertial reference frame
x state vector
Z zero effort miss
z target-missile relative displacement normal to the initial LOS
(̄·) approximation/model
α angle of attack
∆φ maneuver phase
∆T target maneuver period
∆, ∆̄ modeling errors and their bounds
δ control surface deflection angle
δ vector of control surface deflections: canard and tail
η augmented missile state vector
γ flight path angle
λ angle between the temporary and initial LOS
µ SMC uncertainty controller parameter
Φ transition matrix
ψ function of individual contributions in computing the ZEM
σ sliding variable
σ sliding vector
τ time constant
θ pitch angle

Subscripts
0 initial values
bf body frame parallel to the inertial frame
br body rotating frame
c canard
E evasive target
EN evader component perpendicular to the LOS
eq equivalent control
I inertial coordinate frame
kin kinematics
M missile
MN missile component perpendicular to the LOS
q pitch rate
r radial, along the LOS
t tail
Z zero effort miss
α angle of attack
δc canard control
δt tail control
λ perpendicular to the LOS

Superscripts
B body contribution to the aerodynamics force and moment
c command
max maximum

Abbreviations
c.g. center of gravity
LOS line of sight
SMC sliding mode control
ZEM zero effort miss
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I. Introduction

Designing an interceptor missile imposes tradeoffs between conflicting requirements. For example, to
obtain the required agility in a high-end air-to-air interception engagement a canard configuration is

often employed due to the improved homing performance;1 the canard fins, located in the front part of the
fuselage, generate an aerodynamic force that is in the same direction as the required maneuvering force,
thus generating (neglecting servo dynamics) an immediate response in the correct direction. However, if
the missile is to perform sharp initial turns, canard control may limit its performance due to aerodynamic
saturation at high angles of attack, and tail control may be preferred. By using both canard and tail controls
a favorable design compromise can be obtained to provide enhanced performance.

The additional degree of freedom offered by the dual control system requires special consideration in the
guidance and autopilot design. In many studies the focus was on controlling the airframe. A sliding mode
approach2,3 with a linear strategy for blending the two control actions was suggested in several works.4–6

Neural networks were used in Ref. 7 for the design of adaptive nonlinear control for an agile missile with
forward and aft reaction control systems and aerodynamic tail control surfaces. In Ref. 8 the coefficient
diagram method was used for an all aerodynamic tail fins and canard configuration. In recent papers the
focus was different; it was on designing the end-game guidance strategy for such a dual control missile.
The approach was based on the assumption that the additional degree of freedom can be best utilized by
providing the guidance law with the capability of optimally imparting the commands to the two controls.
In Ref. 9 the missile control limits were treated indirectly, by incorporating penalties on the use of the
controls in the linear quadratic optimal control and differential games formulation of the problem, while in
Ref. 10 the control bounds were explicitly taken into account. The performance of these control schemes
was investigated using high order noisy simulation in Ref. 11 and the superiority over classical designs was
advocated.

Integrated flight control and guidance law design may enhance the endgame performance of the intercep-
tor by accounting for the coupling between the control and guidance dynamics. Moreover, in a dual control
configuration it will inherently make use of the additional degree of freedom. In such designs, the entire
guidance and control loop is stated as a solution to a finite horizon control problem, instead of the common
approach treating the inner autopilot loop as an unrealistically infinite horizon one. The integrated design
also allows for a more effective use of the information on the missile states in the guidance problem formula-
tion, as opposed to using only the missile acceleration data in separated guidance loop designs. In Ref. 12, a
game theoretic approach was used for the design of an integrated autopilot-guidance linear controller, which
minimizes the final miss distance and control energy under worst case target maneuvers and measurements
uncertainty. The feedback linearization method13 was used in Ref. 14 in a finite horizon problem setting.
In Ref. 15, a state dependent Riccati differential equation approach was used for designing the integrated
controller. Using a 6 degrees-of-freedom simulation it was shown that the integrated controller provides
improved miss distance statistics compared to the conventional two-loop design practice.

In recent papers,16,17 the sliding mode control (SMC) methodology was applied to the design of an
integrated guidance-autopilot controller. The usefulness of SMC comes from being a nonlinear, robust
control design approach enabling to maintain stability and performance in the presence of modeling errors.
Simplified controllers are obtained using SMC by converting a tracking problem of an n-th order dynamical
system into a first order stabilization problem. This approach leads to satisfactory performance in the
presence of bounded but otherwise arbitrary parameter inaccuracies and model uncertainties. In Ref. 16 it
was applied to obtain a two-loop design, utilizing backstepping and high order SMC methods. In the outer
SMC-like guidance loop, a sliding surface that depends on the line of sight (LOS) rate was defined with the
missile pitch rate used as a virtual control. The inner loop was designed to robustly enforce the pitch rate
command of the outer loop in the presence of uncertainties. Numerical simulation was used to demonstrate
the performance and robustness of the integrated design in tracking an evasive maneuvering target in the
presence of atmospheric disturbances and uncertainty in the plant and actuator dynamics. In Ref. 17 SMC
was used for the derivation of an integrated autopilot-guidance controller, utilizing the zero-effort miss (ZEM)
distance as its single sliding surface. The performance of the integrated controller was compared with that
of two different two-loop designs and the superiority of the integrated design was demonstrated especially
in severe scenarios where spectral separation between guidance and flight control, implicitly assumed in any
two-loop design, is not valid.

In the present paper the SMC methodology is used for the design of an integrated guidance-autopilot
controller for a missile controlled by two aerodynamic surfaces. Compared to the single control case, the
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additional degree of freedom requires the definition of an additional sliding surface. This surface is selected
using flight-control considerations, such as improved stability and shaped/damped response.

In the next section the actual, approximate, and linearized kinematics and dynamics models of the
interception problem are introduced. Next, the integrated guidance-autopilot controller is synthesized, along
with the definition of the two sliding surfaces used for the design. Then, the interaction between the surfaces
and the homing performance is analyzed using non-linear simulations. Concluding remarks are offered in
the last section.

II. Model Derivation

A skid-to-turn cruciform, roll stabilized, missile with forward and aft maneuver surfaces is considered.
The motion of such a missile can be separated into two perpendicular channels. Consequently, the guidance
and control of a target interception problem can be treated as planar in each of these channels. We first
present the full nonlinear kinematics and dynamics equations of the interception problem, which will serve
for analysis. Then, approximate dynamics, that will be used for the design of the nonlinear sliding mode
guidance-autopilot controller, are presented. Finally, linearized equations are derived, which will serve as
the basis for the selection of the SMC sliding surfaces.

A. Non Linear Kinematics and Dynamics

1. Engagement Kinematics

In Fig. 1 a schematic view of the planar endgame geometry is shown, where XI−OI−ZI is a Cartesian inertial
reference frame. We denote the missile and the evasive target by the subscripts M and E, respectively. The
speed, normal acceleration, and flight path angles are denoted by V , a and γ, respectively; the range between
the adversaries is r, and λ is the angle between the initial and current LOS.

VM

λ
γM

γE

aM

aE

Xr

r

M

E

VE

ZI

XIOI

Figure 1. Planar engagement geometry.

Neglecting the gravitational force, the engagement kinematics, expressed in a polar coordinate system
(r, λ) attached to the missile, is

ṙ = Vr (1a)
λ̇ = Vλ/r (1b)

where the closing speed Vr is

Vr = − [VM cos (γM − λ) + VE cos (γE + λ)] (2)
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and the speed perpendicular to the LOS is

Vλ = −VM sin (γM − λ) + VE sin (γE + λ) (3)

The interception duration or the time-to-go, tgo, used in the subsequent derivations, is approximated by

tgo = −r/Vr , Vr < 0 (4)

During the end-game (the time of interest in our analysis) we assume that Vr < 0, and the engagement
terminates when Vr crosses zero.

2. Target Dynamics

In this formulation, it is assumed that the evading target is moving at a constant speed and performs lateral
maneuvers only. The lateral target dynamics are approximated by a first order model

γ̇E = aE/VE (5a)
ȧE = (ac

E − aE) /τE (5b)

where τE is the time constant of the target dynamics and ac
E is the target maneuver command. We assume

that |ac
E | ≤ amax

E , where amax
E is the maximum target acceleration command.

The target acceleration perpendicular to LOS, routinely used in guidance logic synthesis, is given by

aEN = aE cos (γE + λ) (6)

3. Missile Dynamics

The missile planar dynamics are expressed using the coordinate systems presented in Fig. 2. Xbf −M −Zbf

is parallel to the inertial frame XI −OI −ZI , with its origin located at the missile’s center of gravity (c.g.).
It is used to express the missile attitude relative to the inertial frame. The missile equations of motion are
derived in the rotating body fixed coordinate frame Xbr −M − Zbr, where the Xbr axis is aligned with the
missile’s longitudinal axis. It is assumed that during the end-game, the time of interest in our analysis, the
missile speed is constant. Thus, the planar missile dynamics are given by

α̇ = q − L (α, δc, δt) / (mVM ) (7a)
q̇ = M (α, q, δc, δt) /I (7b)
θ̇ = q (7c)

δ̇c = (δc
c − δc) /τc (7d)

δ̇t = (δc
t − δt) /τt (7e)

where the state variables α, q and θ are, respectively, the angle of attack, pitch rate and pitch attitude of the
missile. m and I are its mass and moment of inertia, respectively. δc and δt are, respectively, the deflection
angles of the missile canard and tail aerodynamic surfaces. These surfaces are controlled by actuators,
modeled by first order dynamics with time constants τc and τt. M is the pitch moment acting on the missile;
and L is the lift force generated by the missile and its control surfaces. The aerodynamic forces and moments
are nonlinear, partly unknown functions of the related variables, in particular α, q, δc and δt.

The missile flight path angle γM and acceleration perpendicular to the LOS, aMN , are given by

γM = θ − α (8)
aMN = aM cos (γM − λ) (9)

Here, aM is the missile acceleration perpendicular to its velocity vector, given by

aM = L (α, δc, δt) /m (10)

In modeling the missile dynamics, we assume that the lift and the aerodynamic pitch moment in Eqs. (7)
are generated by the missile body and the control surfaces. This is modeled by

L/m = LB
α f1(α) + Lδcf2 (α + δc) + Lδtf3 (α + δt) (11a)

M/I = MB
α f4(α) + Mqq + Mδcf5 (α + δc) + Mδtf6 (α + δt) (11b)
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δc

δt

c.g.

VM

Xbf

Xbr

Zbf

Zbr

α

γM
θ

Figure 2. Missile coordinate systems.

where

LB
α = Lα − Lδc

− Lδt
(12a)

MB
α = Mα −Mδc

−Mδt
(12b)

L(·) and M(·) denote the stability and control derivatives of the short period model; and fi(·), i = 1, . . . , 6
express the nonlinear aerodynamic characteristics of the missile.

B. Approximate Dynamics

We assume that the true dynamics of the target and missile are unknown to the designer of the missile
autopilot and guidance. Thus, only approximate dynamics can be used, imposing modeling errors. These
approximations are discussed next.

1. Target

The true target dynamics are assumed to be related to the approximate first order linear model of Eq. (5b)
by

ȧEN = (ac
EN − aEN ) /τE + ∆aEN (13)

where the target acceleration command and the modeling error are assumed to be bounded by

|ac
EN | ≤ ∆̄aENc (14a)

|∆aEN | ≤ ∆̄aEN (14b)

2. Missile

The integrated controller, designed in the sequel, uses an approximation of the nonlinear model of Eqs. (7),
(11), i.e.,

α̇ = q − [
L̄B

α f̄1(α) + L̄δc f̄2(α + δc) + L̄δt f̄3(α + δt)
]
/VM + ∆α (15a)

q̇ = M̄B
α f̄4(α) + M̄qq + M̄δc f̄5(α + δc) + M̄δt f̄6(α + δt) + ∆q (15b)

δ̇c = (δc
c − δc) /τc (15c)

δ̇t = (δc
t − δt) /τt (15d)

where L̄(·), M̄(·) and f̄i(·), i = 1, . . . , 6 are approximations of their respective quantities and functions. ∆α

and ∆q express the modeling errors that are assumed to be bounded by

|∆α| ≤ ∆̄α (16a)
|∆q| ≤ ∆̄q (16b)

We assume no modeling errors on the actuators dynamics.
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C. Linearized Kinematics and Dynamics

The definition of the sliding surfaces in the integrated guidance-autopilot design will be based on simplified
kinematics and dynamics models. For that, it is assumed that during the endgame, the missile and target
deviations from the collision triangle are small. Thus, linearization of the endgame kinematics, are performed
around the initial LOS.18 The linearized kinematics variables are depicted in Fig. 3, where the X-axis is
aligned with the initial LOS. The approximate short-period linearized equations of motion are used for the
missile dynamics.19

r
z

X

Z

VE

VM

aE

γM

λ0

λaM

aMN

aEN

M

E

XIOI

ZI

Figure 3. Linearized endgame kinematics

The state vector of the integrated guidance-autopilot problem is defined by

x =
[

z ż aEN α q δc δt

]T

(17)

where z is the relative displacement between the target and the missile normal to the initial LOS. Within
the linear setting, aMN , defined in Eq. (9), is approximated by

aMN ≈ aM cos (γM0 − λ0) (18)

where the subscript 0 denotes the initial value around which linearization has been performed. Thus, the
missile acceleration normal to the initial LOS, aMN , is given by

aMN = CM

[
α q δc δt

]T

(19)

where
CM =

[
Lα 0 Lδc Lδt

]
cos (γM0 − λ0) (20)

The equations of motion of the integrated dynamics are

ẋ = Ax + Bδc + Gac
EN (21)

where

A =

[
Akin A12

[0]4×3 AM

]
, A12 =




[0]1×4

−CM

[0]1×4


 , B =

[
[0]3×2

BM

]
(22)
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G =
[

0 0 1/τE 0 0 0 0
]T

(23)

and [0]a×b denotes a matrix of zeros with appropriate dimensions. From the equations of relative motion
normal to the initial LOS

Akin =




0 1 0
0 0 1
0 0 −1/τE


 (24)

Using Eqs. (7) and (11) the linearized short period dynamics, coupled with the first order control surface
actuation models of Eqs. (7d) and (7e), yield

AM =




−Lα/VM 1 −Lδc
/VM −Lδt

/VM

Mα Mq Mδc
Mδt

0 0 −1/τc 0
0 0 0 −1/τt


 , BM =




0 0
0 0

1/τc 0
0 1/τt


 (25)

III. Integrated SMC Guidance-Autopilot Synthesis

The SMC design methodology entails three major steps: a) selection of a sliding manifold σ = 0 to
ensure stable desired dynamic characteristics of the system once in the sliding mode; b) computation of the
equivalent control to impose σ̇ = 0 once on the sliding surfaces, while using an approximate model of the
system dynamics; and c) choosing an uncertainty controller to ensure stability and finite time convergence
to the surfaces when σ 6= 0.

A. Sliding Surfaces

The ZEM18 is the expected miss distance computed using the homogenous solution of the associated linear
engagement equations of motion. Its usefulness in missile guidance problems where the only state of impor-
tance is the miss distance, comes from reducing the n-dimensional guidance problem to a scalar one. Also,
its dynamic equation depends only on the system inputs. The ZEM is dependent on the problem formulation
and model. In a one-sided optimal control optimization problem it has the physical meaning of being the miss
distance, if from the current time onwards the interceptor does not apply controls and the target performs
the expected maneuver. In a two-sided differential game problem, ZEM is the miss distance, if from the
current time onwards both players do not apply controls. In a recent study,17 for a canard controlled missile
(SISO problem), the differential game based ZEM was chosen as the single sliding surface for an integrated
guidance-autopilot design. This choice does not require any assumption regarding the future maneuvers of
the target. If the system response is maintained on this surface, it provides zero miss distance. Moreover,
once on the surface, no control action is needed to ensure interception in the nominal linear case with perfect
modeling and no target maneuvers. In a realistic nonlinear environment, with modeling errors and target
maneuvers, the uncertainty control element of the SMC solution is designed to nullify deviations from the
sliding surface in finite time.

The governing equation that is used to define the ZEM is the linearized Eq. (21). Due to the definition

of ZEM, assuming that δc =
[

δc
c δc

t

]T

and ac
EN are identically zero, the measurement-like equation of

ZEM denoted by Z is
Z = CZx (tgo) (26)

where
CZ =

[
1 0 0 0 0 0 0

]
(27)

To compute x (tgo), we introduce the transition matrix Φ (tf , t), which, for the linear time invariant
system of Eq. (21), is given by

Φ (tf , t) = Φ (tgo) = exp (Atgo) (28)

Thus,
x (tgo) = Φ (tgo)x (29)
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Using the expression of Eqs. (28) and (29) in Eq. (26), the ZEM is expressed as

Z
∆= CZΦ(tgo)x (30)
= z + żtgo + aENτ2

Eψ (tgo/τE)
+ ψα (tgo)α + ψq (tgo) q + ψδc (tgo) δc + ψδt (tgo) δt

where
ψ (ζ) = exp (−ζ) + ζ − 1 (31)

and ψα (tgo), ψq (tgo), ψδc (tgo) and ψδt (tgo) are complicated functions of the system parameters and tgo,
and hence of the kinematics variables.

Assuming small deviations from a collision triangle, the displacement z normal to the initial LOS can be
approximated by z ≈ (λ− λ0) r. Differentiating with respect to time yields

z + żtgo = −Vrt
2
goλ̇ = Vλtgo (32)

Thus, the first two terms in Eq. (30) can be expressed as a function of the kinematics variables Vr, Vλ and
r. The last four complicated terms of Eq. (30) can be obtained from the numerically computed transition
matrix Φ (tgo) associated with A of Eq. (22). Using this together with the relationship obtained in Eq. (32),
the ZEM of Eq. (30) is expressed as

Z = Vλtgo + aENτ2
Eψ (tgo/τE) + CZΦ(tgo)η (33)

where
η =

[
0 0 0 α q δc δt

]T

(34)

contains the missile variables of the state vector x, pre-pended with zeros.
In the current two-input MIMO problem we seek an additional sliding surface to fully exploit the design

degrees of freedom offered by the dual control configuration. The sought after surface should not interfere
with the first surface, ensuring zero miss distance if the system is kept on it. Moreover, if possible it
should not restrict the canard control, as it has been shown in several studies that it has a higher effect
in enhancing the homing performance.1,11,20 Thus, we choose the following sliding surface based on flight-
control considerations, without explicitly referring to the canard control

σM = M̄B
α f̄4(α) + M̄δt f̄6(α + δt) (35)

The above expresses the angle of attack and tail contributions to the missile aerodynamic pitch moments,
resulting from the approximate model of Eq. (15b). Since the missile is assumed stable this surface enforces
the tail control to produce a moment equal to the one generated by the body, but in an opposite direction.
Thus, missile response is damped, and trim is enforced provided there are no maneuver commands issued
by the canard. The canard commands may be caused by guidance considerations, in order to remain on the
Z = 0 surface.

In the sequel, the two sliding surfaces are grouped into the sliding vector σ = [ Z σM ]T .

B. Equivalent Controller

The equivalent controller is designed to maintain the system on the sliding surfaces, once those are attained.
This is obtained by imposing σ̇ = 0. Thus, the derivation of the equivalent controller will require a derivative
of the sliding vector.

The time derivative of ZEM is given by

Ż = V̇λtgo + Vλṫgo + τ2
E

[
ȧENψ (tgo/τE) + aENψ′ (tgo/τE) ṫgo

]

+ CZ

[
Φ′ (tgo) ṫgoη + Φ (tgo) η̇

]
(36)

where

V̇r = V 2
λ /r + aM sin (γM − λ) + aE sin (γE + λ) (37)

V̇λ = − VλVr/r − aM cos (γM − λ) + aE cos (γE + λ) (38)
ṫgo = − 1 + V̇rr/V 2

r (39)
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and
ψ′ (tgo/τE) = ∂ψ (tgo/τE) /∂tgo = [tgo/τE − ψ (tgo/τE)] /τE (40)

Φ′ (tgo) = ∂Φ(tgo) /∂tgo = Φ (tgo)A (41)

Due to the structure of η, its derivative η̇ used in Eq. (36) is given by Eqs. (15), pre-pended with three zero
elements. This can be expressed by

η̇ = f (η) + ∆f (η) + Bδc (42)

where f (η) are the known state dependent terms of Eqs. (15), while ∆f (η) contains the modeling errors
∆α and ∆q in its 4-th and 5-th elements, respectively. The matrix B is defined in Eq. (22).

The time derivative of the second surface is given by

σ̇M =
[
M̄B

α f̄ ′4(α)
]
α̇ +

[
M̄δt

f̄ ′6(α + δt)
] (

α̇ + δ̇t

)
(43)

where f̄ ′i(·), i = 4, 6 denote the partial derivatives of the functions f̄i(·), i = 4, 6 with respect to their respective
arguments. In this equation, α̇ is computed using Eq. (15a) or, equivalently, equals the fourth element of
f (η) + ∆f (η) in Eq. (42), i.e.,

α̇ = Cαf (η) + ∆α (44)

where Cα = [ 0 0 0 1 0 0 0 ].
The relations of Eqs. (13), (15d), (42) and (44) are used in Eqs. (36) and (43) to yield

σ̇ = g + ∆g + Hδc (45)

where

g =





V̇λtgo + Vλṫgo + aENτ2
E

[
ψ′ (tgo/τE) ṫgo − ψ (tgo/τE) /τE

]

[
M̄B

α f̄ ′4(α) + M̄δt f̄
′
6(α + δt)

]
Cαf (η)−

[
M̄δt f̄

′
6(α + δt)

]
δt/τt





+





CZΦ(tgo)
[
Aṫgoη + f (η)

]

0



 (46a)

∆g =





(
ac

EN + τE∆aEN

)
τEψ (tgo/τE) + CZΦ(tgo) ∆f (η)

[
M̄B

α f̄ ′4(α) + M̄δt f̄
′
6(α + δt)

]
∆α



 (46b)

H =




CZΦ(tgo)B

[
0 M̄δt f̄

′
6(α + δt)/τt

]


 (46c)

The particular choice of the sliding surfaces ensures that the matrix H in Eq. (46c) is upper triangular with
non-zero terms on the diagonal, and hence nonsingular. Using the bounds in Eqs. (14) and (16), the two
elements of ∆g can be bounded as

|∆gi| ≤ ∆̄gi , i = 1, 2 (47)

In the absence of modeling errors and target maneuvers, once the system reaches the sliding surface it
will remain on it using the equivalent control command δc

eq given by

δc
eq = −H−1g (48)
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C. Uncertainty Controller

Modeling uncertainties and disturbances may cause the system to depart from the sliding surfaces. To
accommodate these departures the equivalent controller is augmented by a second component, sometimes
referred to as the uncertainty controller. The goal of this uncertainty controller is to drive the system to the
sliding surface in finite time, while ensuring closed-loop stability. The design of the uncertainty controller is
based on the approximate models of the system dynamics given in Eqs. (13)-(16). The kinematics model of
Eqs. (1)-(3) is assumed to be known exactly.

The integrated guidance control logic is designed using the Lyapunov function candidate

L =
1
2
σT σ (49)

The time derivative of this Lyapunov function candidate is given by

L̇ = σT σ̇ = σT (g + ∆g + Hδc) (50)

where the result in Eq. (45) was used for σ̇. The SMC controller is chosen to be

δc = δc
eq −H−1M sgn(σ) (51)

The second term on the right hand side of Eq. (51) is the uncertainty controller, where M = diag(µ1, µ2)

is a diagonal 2 × 2 matrix, and sgn(σ) =
[
sgn(σ1) sgn(σ2)

]T

. With this controller, the derivative of the
Lyapunov function candidate becomes

L̇ = σT
[
∆g −M sgn(σ)

]
=

2∑

i=1

σi

[
∆gi − µisgn(σi)

]
(52)

Using the bounds in Eqs. (47), this derivative can be bounded by

L̇ ≤ −
2∑

i=1

|σi|
(
µi − ∆̄gi

)
(53)

Choosing
µi > ∆̄gi , i = 1, 2 (54)

will guaranty a negative definite Lyapunov function derivative and hence convergence to the two-dimensional
sliding manifold in finite time. Moreover, the values of µi, i = 1, 2 could be tuned to emphasize the attraction
of one sliding surface compared to the other. In a realistically noisy and uncertain interception environment,
a boundary layer around the sliding surface can be employed to provide smooth control commands and to
avoid chattering caused by the sgn function in Eq. (51).

IV. Performance Analysis

Performance of the proposed integrated guidance and control algorithm is evaluated through numerical
simulations, incorporating the nonlinear models of Eqs. (1), (5) and (7). A sample run is first examined,
followed by a Monte Carlo study.

A. Scenario

The numerical study was performed for a generic interceptor model, that is based on the missile control
example introduced in Ref. 21 and utilized in Ref. 11. It is assumed that the target performs a square
wave evasive maneuver with a period of ∆T and a phase of ∆φ relative to the beginning of the simulation.
The initial missile-target range was set to 1000 m. The initial missile velocity vector was aligned with the
initial LOS. The target initial velocity vector is pointed 20 deg away from the initial LOS. An example of
the engagement geometry and trajectories is plotted in Fig. 4.
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Figure 4. Sample run engagement trajectories.

The missile and target model parameters are given in Table 1. The functions fi(·), i = 1, . . . , 6 were
chosen to be the standard saturation functions

sat(u) =





Um u > Um

u |u| ≤ Um

−Um u < −Um

(55)

with Um = 25◦ for all i. Moreover, the fins’ deflections were limited to ±25◦. For the controller design, the
model functions f̄4(·) and f̄6(·), that have to be differentiated with respect to their argument (see Eq. (43)),
were chosen as smooth approximations of Eq. (55).

Table 1. Simulation Parameters

Missile Target
Actual Model

VM = 380 m/sec L̄B
α = 1190 m/sec2

VE = 380 m/sec
τc = 0.02 sec L̄δc = 40 m/sec2

amax
E = 15 g

τt = 0.02 sec L̄δt = 40 m/sec2 ∆T = 1 sec
M̄B

α = −100 sec−2 ∆φ ∈ [0, 1] sec
M̄q = −5 sec−1 τE ∈ [0.05, 0.2] sec

M̄δc = 80 sec−2

M̄δt = −80 sec−2

B. Sample Run Performance

The performance of the proposed guidance and control design is first evaluated for a sample run. The target
maneuver was characterized by τE = 0.1 sec and ∆φ = 0 sec. In Figs. 5 the ZEM and σM , computed using
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Eq. (33) and Eq. (35), respectively, are shown. The missile and target accelerations are given in Fig. 6; and
the canard and tail deflection angles are plotted in Fig. 7. The initial ZEM error, caused by the heading
error, is decreased and maintained close to the desired surface, i.e., Z = 0, up to interception. Deviations
from the second surface occur as a result of tail saturation, evident in Fig. 7. This happens when high
accelerations are generated (see Fig. 6) in order to close the initial heading error and account for the target
evasive maneuvers. When the tail is not saturated, the sliding variable σM remains close to zero, e.g., in
the times interval of 1.05− 1.25 sec. The ZEM surface is maintained mainly due to the effect of the canard
control. This is possible since the second surface (σM ) does not explicitly restrict the canard control. Note
that strong activity of the canard control is required in order to achieve this task.
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Figure 5. ZEM and σM for a sample run.

It is interesting to examine the effect of µ2 of Eq. (51) on the controller performance. Increasing µ2

emphasizes the reduction of the flight control motivated sliding variable σM . This increase, in effect, increases
the missile damping and may improve the interception accuracy. Such a comparison is depicted in Figs. 8.
For this sample case, choosing µ2 = [10, 50, 100] results in miss distances of 8, 3 and 3.5cm, respectively.
This means that choosing a relatively high µ2 could, on top of providing increased missile damping, over
emphasize σM on the account of the ZEM surface and hence degrade the interception accuracy.

C. Homing Performance

The homing performance of the proposed algorithm is evaluated by a Monte Carlo simulation study consisting
of 100 sample runs for each test point. In these simulations, for each test case, the random variable was
chosen as the maneuver phase ∆φ of the target, assumed to be distributed uniformly as ∆φ ∼ U (−.5, .5) sec.
The mean and standard deviation of the miss distance are shown in Fig. 9 and Fig. 10 as a function of the
target time constant. As can be expected, the miss distance increases as the target time constant decreases.
The plots show the results for various values of µ2, the gain of the uncertainty controller of the second
control surface. Similar to the results presented earlier, increasing µ2 up to a certain level improves the
missile dynamic characteristics and consequently the interception accuracy.
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Figure 6. Missile and target acceleration profiles for a sample run.
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Figure 7. Canard and tail deflections for a sample run.
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Figure 8. ZEM and σM for a sample run and different µ2 values.
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Figure 9. Homing performance evaluation using expected miss.
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Figure 10. Homing performance evaluation using miss standard deviation.

V. Summary

The sliding mode control approach was used to derive an integrated guidance-control algorithm for a
dual control interceptor missile. For this two input control problem, two sliding surfaces were defined. The
zero-effort miss distance, from a differential game formulation of the interception problem, was used as one
of those sliding surfaces. The additional surface was chosen based on flight-control considerations. The
interaction between the two surfaces was investigated. Through Monte Carlo simulations it was shown that
small miss distances can be achieved even in stringent interception scenarios.
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